首页> 外文OA文献 >Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation
【2h】

Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation

机译:时间分辨光谱研究电荷俘获碳氮化物光催化剂产氢

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Carbon nitride (g-C3N4) as a benchmark polymer photocatalyst is attracting significant research interest because of its visible light photocatalytic performance combined with good stability and facile synthesis. However, little is known about the fundamental photophysical processes of g-C3N4, which are key to explain and promote photoactivity. Using time-resolved absorption and photoluminescence spectroscopies, we have investigated the photophysics of a series of carbon nitrides on time scales ranging from femtoseconds to seconds. Free charge carriers form within a 200 fs excitation pulse, trap on the picosecond time scale with trap states in a range of energies, and then recombine with power law decays that are indicative of charge trapping–detrapping processes. Delayed photoluminescence is assigned to thermal excitation of trapped carriers back up to the conduction/valence bands. We develop a simple, quantitative model for the charge carrier dynamics in these photocatalysts, which includes carrier relaxation into an exponential tail of trap states extending up to 1.5 eV into the bandgap. This trapping reduces the efficiency of surface photocatalytic reactions. Deep trapped electrons observed on micro- to millisecond time scales are unable to reduce electron acceptors on the surface or in solution. Within a series of g-C3N4, the yield of these unreactive trapped electrons correlates inversely with H2 evolution rates. We conclude by arguing that the photophysics of these carbon nitride materials show closer parallels with inorganic semiconductors than conjugated polymers, and that the key challenge to optimize photocatalytic activity of these materials is to prevent electron trapping into deep, and photocatalytically inactive, electron trap states.
机译:氮化碳(g-C3N4)作为基准聚合物光催化剂,由于其可见光光催化性能以及良好的稳定性和便捷的合成而备受关注。但是,对g-C3N4的基本光物理过程知之甚少,这是解释和促进光活性的关键。使用时间分辨的吸收和光致发光光谱学,我们研究了一系列碳氮化物的光物理性质,其时间范围从飞秒到秒。自由电荷载流子在200 fs的激发脉冲内形成,在皮秒级的时间范围内以一定范围的能量陷获陷阱,然后与幂定律衰减重新结合,表明电荷陷获-去陷获过程。延迟的光致发光被分配给捕获的载流子的热激发,直至回到导带/价带。我们为这些光催化剂中的电荷载流子动力学开发了一个简单的定量模型,其中包括载流子弛豫到陷阱态的指数尾部,陷阱能级扩展到带隙中直至1.5 eV。这种捕集降低了表面光催化反应的效率。在微秒至毫秒级的时间内观察到的深陷电子无法还原表面或溶液中的电子受体。在一系列g-C3N4中,这些未反应的俘获电子的产率与H2的释放速率成反比。我们通过论证得出结论,这些氮化碳材料的光物理特性与共轭聚合物相比,与无机半导体的相似性更高,优化这些材料的光催化活性的关键挑战是防止电子陷入深层的,光催化惰性的电子陷阱态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号